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Abstract— Multiple scattering effects from spherical water par-
ticles of uniform diameter are studied for a W-band pulsed radar.
The Gaussian transverse beam-profile and the rectangular pulse-
duration are used for calculation. An second-order analytical
solution is derived for a single layer structure, based on a time-
dependent radiative transfer theory as described in the authours’
companion paper. When the range resolution is fixed, increase in
footprint radius leads to increase in the second order reflectivity
that is defined as the ratio of the second order return to the
first order one. This feature becomes more serious as the range
increases. Since the spaceborne millimeter-wavelength radar has
a large footprint radius that is competitive to the mean free
path, the multiple scattering effect must be taken into account
for analysis.

I. I NTRODUCTION

Effects of multiple scattering on weather radars have been
rarely studied in the remote sensing society. As an experimen-
tal demonstration, Ito et al. [1] pointed out that large linear
depolarization ratios (LDR) measured in rains with 35 GHz
radars can be attributed to multiple scattering effect rather than
single scattering from non-spherical particles. Marzano et al.
[2] simulated the multiple scattering effect for convective rains
through a Monte-Carlo method, and reported that overestima-
tion of reflectivity due to multiple scattering can reach nearly
20 dBZ. Recently, Kobayashi et al. [3] derived a theory of
second order scattering for a radar with finite-beam width, and
found that the reflectivity of second order scattering increases
as a function of the ratio of footprint radius to mean free path
of a random medium, and that this reflectivity asymptotically
approaches the values that the plane-wave incident theory [4]
predicts. Battaglia et al. [5], on the other hand, performed
another Monte Carlo simulation in which the finite beam
effect is explicitly taken into account. Their results, in good
agreement with the theoretical prediction of Kobayashi et al.,
showed that the multiple scattering effect for a spaceborne
radar can reach 10-20 dBZ at 35 GHz, while almost negligible
for an airborne radar due to its small footprint size.

In this paper, the second order scattering approximation
based on Ito et al. [6] is applied for W-band pulsed radars.
A single layer of random medium is assumed to consist of
spherical particles of uniform size. When considering a general

particle distribution of spherical particles, a similar conclusion
can be derived by taking ensemble average over an absorption
coefficient and a scattering matrix. Furthermore, the method
itself can be easily extended to higher order multiple scatter-
ings, and also to multiple layers of hydrometeors. However,
the formalism is based on the radiative transfer theory so that
the solutions can not include the effects of cross terms, i.e.
backscattering enhancement.

II. FORMALISM

Figure 1 is a schematic of a layer of hydrometeors of
thicknessd. A radar antenna at pointAn with a narrow 3-dB
beam widthθd � 1 is located at a distanceR from the top of
the medium. The origin of position coordinate O is assumed
to be set at the beam center on the surface. Suppose that the
antennaAn transmits a rectangular pulse of duration timeT
with a linear polarization. The origin of timet is set at the
moment when the transmitted pulse reaches the top surface
of the medium. Furthermore the transmitting and receiving
antenna gains are assumed to be equal, denoted byG. z and
ρ represent the longitudinal and transverse coordinates of an
arbitrary pointx. The 3-dB footprint radiusσr(z) at z can be
represented as

σ2
r (z) ≡

(R + z)2θ2
d

8 ln2
(1)

When the medium consists of spherical particles, the specific
intensity at pointx in a general direction̂Ω is represented as
a solution of time-dependent radiative transfer equation[1]:

(
1

c

∂

∂t
+ Ω̂ ·

∂

∂x
+ κe

)
J(z, ρ, Ω̂, t)

=

∫
dΩ̂′

Ψ(Ω̂, Ω̂′)J(z, ρ, Ω̂′, t) (2)

wherec is the speed of light.κe denotes the extinction rate
given by the Foldy-Oguchi-Twelsky formula [7].Ψ(Ω̂, Ω̂′)
denotes the 4x4 scattering matrix of the medium. Notice that
the coherent (reduced) specific intensity must satisfy the ho-
mogeneous part of Eq. 2. Once we determine an optimal form
of coherent specific intensity, the first order specific intensity
can be obtained by the perturbation technique as described in



the authours’ companion paper. When the extinction rate from
the top surface of medium to pointAn is represented byκar,
the intensity received by the antenna at timet + R/c can be
obtained by multiplying the receiving cross-section with the
intensity aiming pointAn, followed by integration over solid
angle. The result is written:

I(1)
r = IBR2

Ψ(Ω̂B, Ω̂I)I0

∫ min[ct/2, d]

max[c(T−t)/2, 0]

e−2κez′

(R + z′)2
dz′

(3)
where the constantIB is defined as

IB =
πPtG

2θ2
d e−2κarR

25k2R2ln2
(4)

The directionŝΩB and Ω̂I are defined as

Ω̂B = (π,∀ ϕB) (5)

Ω̂I = (0,∀ ϕI) (6)

In a similar manner, the returned 4-d intensity for the second
order scattering can be obtained as

I
(2)
r ≈ πPtG

2

2k2R2

∫ 2π

0 dΦ
∫ ∞

0 dρ0 · ρ0 · exp[−ρ2
0/(2σ2

r(0)]
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0 dϕ′
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where the variableρ0 has been introduced asρ0 = R · tanΘ.

III. R ESULTS AND DISCUSSIONS

In this paper, a layer thicknessd, a range resolutioncT/2,
and a footprint radiusσr are normalized by the mean free path
of medium lfree, and represented byτd, τp and Ξr respec-
tively. For calculation of Fig. 2, a single layer of spherical
water particles of uniform diameterD = 1 mm is assumed
to have the normalized thicknessτd = 2 at temperature of
20◦C. A pulse of the normalized range resolutionτp = 0.1
is incident with the normalized footprint radiusΞr = ∞.
The carrier frequency in the pulse is set at 95 GHz. The
return signals of the first and second order scattering at time
t+R/c are given by Eqs. 3 and 7, respectively. Without losing
generality, we can eliminate the effect of distanceR from the
receiving timet + R/c, redefining the receiving time ast.
Alternatively, we can represent the receiving timet by using
the normalized rangeτr = 2−1ct/lfree. The normalized first

order copolarized power-returnlco
1 and cross-polarized power-

returnlcx
1 are defined by dividing Eq. 3 by Eq. 4. It is noticed

that lcx
1 is always zero for the spherical particles. In a similar

manner, the normalized second order copolarized power-return
lco
2 , and cross-polarized power-returnlcx

2 are defined. The
normalized footprint radiusΞr = ∞ is first assumed for Fig.
2, which corresponds to the plane wave incidence theory [1].
In Fig. 2a, lco

1 , lco
2 and lcx

2 are plotted as functions of the
normalized rangeτr. Figure 2b shows the linear depolarization
ratio (LDR) defined bylcx

2 /(lco
1 + lco

2 ). The abrupt increase in
LDR from τr = 2 to 2.1 can be explained by the vanishment
of lco

1 at the rear edge of medium. LDR slowly approaches
its second order asymptotic value of -6.5 dB that is calculated
from Eq. (28) in [3]. To see the effect of a finite footprint
radius, calculation is performed forτr ≤ 2.6 with a smaller
normalized footprint radiusΞr = 0.2 and the other parameters
kept the same as those in Fig. 3. It is noticed that the first order
term lco

1 is invariant for change inΞr. On the other hand, the
values oflco

2 and lcx
2 in Fig. 3a become lower than those in

Fig. 2a, andlco
2 becomes always lower thanlco

1 in contrast to
Fig. 2a, because the second order scatterings with scattering
angles nearθ′ = 90◦ can not be effectively collected with
such a small footprint. The rapid decreases oflco

2 andlcx
2 after

τr = 2 are conspicuous due to the same reason. LDR in Fig.
3b also shows great difference from that in Fig. 2b. The fast
approach to the asymptotic value (-6.5 dB) is related to the
aforementioned rapid decreases oflco

2 and lcx
2 .

In Fig. 4a, the second order power-returnslco
2 and lcx

2 for
Ξr = 0.2 and∞ are compared as functions of the normalized
rangeτr. As τr increases, the difference betweenΞr = 0.2 and
∞ increases. This feature is more serious in cross-polarized
return than in copolarized return, because the contribution of
scattering ofθ′ ≈ 90◦ to the second order scattering is larger
in cross polarization than in copolarization [3]. In Fig. 4b,
lco
1 , lco

2 and lcx
2 are plotted as functions of the normalized

footprint radiusΞr for fixed normalized rangesτr = 1.8. As
mentioned for Fig. 3, the first order termlco

1 is invariant for
change inΞr. The second order termslco

2 and lcx
2 decrease

strongly for Ξr / 1. On the other hand, forΞr ' 2, these
values asymptotically approach to the values predicted by the
plane wave incidence case that is given byΞr = ∞. When
considering spaceborne radar operation such as in CloudSat
Mission [8], [9], the deductions from Figs. 4 a and b imply
that the multiple scattering effect must be taken into account
due to its large footprint radius as also reported by [3], [5].
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Fig. 2. Normalized footprint radiusΞr = ∞ is used for calculation. a):
The normalized power-returnslco

1
, lco

2
and lcx

2
are plotted as functions of the

normalized rangeτr . Note thatlco

1
vanishes afterτr = 2.1. b): The linear

depolarization ratio (LDR) versus the normalized rangeτr .



Fig. 3. Normalized footprint radiusΞr = 0.2 is used for calculation. The
other parameters are kept the same as those in Fig. 2. a):lco

1
, lco

2
and lcx

2
are

plotted as functions of the normalized rangeτr . b): LDR versus the normalized
rangeτr .

Fig. 4. a): The second order power-returnslco

2
and lcx

2
for Ξr = ∞ and

Ξr = 0.2 are compared as functions of the normalized rangeτr . b): lco

1
,

lco

2
and lcx

2
are plotted as functions of normalized footprint radiusΞr . The

normalized range is set atτr = 1.8. Note thatlco

1
is invariant withΞr. lco

2

and lcx

2
decrease strongly forΞr / 1, while these values asymptotically

approach to the values predicted by Eq. 7 withΞr = ∞.


